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On the density of states of Schrodinger operators with a 
random potential 

Werner Kirsch and Fabio Martinellit 
Institut fur Mathematik, Ruhr-Universitat Bochum, West Germany 

Received 25 January 1982 

Abstract. Using very recent results on ergodic theorems for superadditive processes on 
Rd, we prove the existence of the density of states for a wide class of random Schrodinger 
operators. In particular, new non-asymptotic estimates on the density of states are obtained 
and examples are discussed. 

1. Introduction 

Schrodinger operators H, = -A+  V, with a random potential V, occur naturally in 
models of disordered systems (see e.g. Lifschitz 1965); a quantity of particular interest 
is the ‘integrated’ density of states p ( A )  defined as the thermodynamic limit 

1 

where p,,(A, U )  is the number of eigenvalues less than A of H, restricted to a finite 
box A with appropriate boundary conditions. A number of papers in both mathemati- 
cal and physical literature have been devoted to the proof of the existence of the 
above limit and its independence of the particular realisation of V,, and to the estimate 
of its asymptotic behaviour as A goes to either the left edge of the spectrum of H, or 
to plus infinity. We refer the reader to the work by Pastur (1973, 1971, 1972, 1977), 
Fukushima (1974, 1980), Fukushima and Nakao (1977), Nakao (1977) and Kotani 
(1976). The main tool for their proofs is the representation of the Laplace transform 
of pA(A, w )  as a Wiener integral, together with estimates on the asymptotic behaviour 
of such integrals for large times. However, a key assumption was the strict stationarity 
and ergodicity of the potential V, as well as some regularity of its sample paths. 
Therefore the method does not cover the following physically interesting case when 
V, is a random modification of a periodic structure: 

where { ~ ~ } ~ ~ ~ d  is a lattice in Rd and f i ( w )  is a random function. An example of such 
a potential is the case whenfi(w, x )  = q i ( w ) f [ x  - & ( U ) ]  where {qi(w)}iEEd and { ~ i ( w ) } i s ~ d  

are two ergodic random fields on Zd, which models a solid with ‘particles’ with random 

t On leave of absence from Istituto di Fisica GNFM, Universita di Roma, Italy. 
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charges q i ( w )  located at the random positions xi  + t i ( w ) .  Hamiltonians of such a kind 
have been studied in Kirsch (1981) and Kirsch and Martinelli (1981a, b, c, 1980) (see 
also Lieb and Mattis (1966) for physical background and specific models). In this 
paper we present a new proof for the existence and non-randomness of the density 
of states, as well as new non-asymptotic estimates, which, besides generalising previous 
results for metrically transitive potentials, also covers case (1). Our results are based 
on well known estimates on the number of bound states of Schrodinger operators 
(see Lieb and Thirring (1976) and Lieb (1976)) and on very recent results on ergodic 
theorems for superadditive processes due to Akcoglu and Krengel (1981). We also 
refer the reader to the paper by Slivnyak (1966) for a somewhat similar approach to 
the problem We now briefly present the contents of the various sections. In 0 2 we 
recall and prove some simple results concerning Schrodinger operators in a finite box 
A. In 0 3 we prove the existence of p ( A )  as well as the basic estimates, and we discuss 
the dependence of p ( A )  on the boundary conditions. In § 4 we prove some asymptotic 
results for A + fco which are then applied first to the case when V, is a random step 
function on Rd and then to the case when V, is an arbitrary gaussian random field. 
These examples illustrate the difference between the density of states computed in 
the continuous and discrete cases (tight-binding model) when the Laplacian is replaced 
by its discrete version on 1 2 ( Z d ) .  Other interesting questions concerning p ( A ) ,  such 
as its support properties as a measure on the real line, the computations of the Lifshitz 
exponents (see Lifshitz (1965) and Romerio and Wreszinski (1979)) for some cases, 
as well as the extension of the present results to the case of N interacting particles 
subjected to an external random field, will be discussed in a forthcoming paper. 

2. Schrodinger operators in finite boxes 

In this section we state and prove some results concerning Schrodinger operators in 
a finite box A c Rd, d 2 1, which will be needed later when we will discuss random 
Schrodinger operators. In the sequel A will denote an arbitrary bounded open 
hypercube in Rd. 

Definition 2.1. Let H'(A)  = {f E L2(A);  Vf cLZ(A)}  where the gradient is intended in 
the distributional sense. It is well known (see e.g. Adams 1975) that H'(A)  is a Hilbert 
space under the norm l l f l l H 1 ( ~ )  = (Z;lalsl IID"fll:)"z where II.112 is the L2(A) norm and 
D" are the usual distributional derivatives. Let also HA (A) be the closure of CF (A) 
in the norm I I * ~ I H ~ ( ~ ) .  We then define (see e.g. Reed and Simon 1978b) the Dirichlet 
Laplacian in A, -A?, as the unique self-adjoint operator on L2(A) whose quadratic 
form is the closure of the form 

qD(f, g) = I (v* V g b )  dx, f, g E C," (N. 
A 

The Neumann Laplacian in A, -AT, is the unique self-adjoint operator on L2(A) 
whose quadratic form is 

qN(f, g) = j m* Vg)(x) dx, f, g E H W .  
A 

The following theorem is well known (see e.g. Reed and Simon 1978b). 
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Theorem 2.1. Both -A? and -A: have compact resolvent, so that their spectra consist 
of isolated eigenvalues of finite multiplicity, denoted by ,uF and pf respectively, such 
that ,u? + +a, pf + +co as k + +W. 

In order to define the Schrodinger operators -A?+ V, -A,”+ V in A we need the 
following lemma. 

Lemma 2.1. Let V E  L p ( A )  with p = 1 if d = 1, p 7 1 if d = 2, and p a i d  if d 3 3. 
Then V as an operator on L2(A) is a small form perturbation of both -A? and -AT. 

Proof. We have to show that Vf E H’(A)  

V E  > 0 and some constant b ( ~ ,  V) 3 0. Since V can be split into V = V, + W where 
V, E L”(A) and W E L p ( A ) ,  and furthermore for any E > 0 Vm can be chosen so large 
that 11 WIJ, < E ,  ( 2 )  follows immediately from the usual Sobolev embedding theorems 
(see e.g. Adams 1975 and Faris 1975). 

Remark 2.1. It is worthwhile to note that the constant b ( ~ ,  V) can be chosen as small 
as we like for 11 VI/, sufficiently small. 

Let us now denote by H? and H: the operators -AY+ V, -A:+ V respectively, 
defined for V as in lemma 2.1 as form sums (see e.g. Reed and Simon 1978a). For 
both H? and H,” one has the following perturbation result. 

Proposition 2.1. 
(a) Both Hfl  and HY have compact resolvent. 
(b) If we denote by A,,(H?), A,(Hf:) the eigenvalues (counting multiplicity) of 

HD, HN respectively, then V E  > 0 

- b ( ~ ,  V ) + ( l - & ) p , D a A , , ( H ? ) a ( l + ~ ) p , D  + b ( ~ ,  V), 

- b ( ~ ,  V) + (1 - ~ ) p r  A,,(H,”) 6 (1 + ~ ) p r  + b ( ~ ,  V), 

where p:, ,u: are the eigenvalues of -AY and -AY respectively. 
(c) exp(-tH? ), exp(-tHY ), t > 0 ,  are trace class. 
(d) If V,, E L p ( A ) ,  V E L p ( A )  and IIV - V,,llp + 0 as n + +a, where p is as in lemma 

A k ( H F ) + A k ( H ? ) ,  A k ( H T ; ’ ) +  Ak(H?) as n ++CO. 

(e) Tr[exp(-tHf;’)]+Tr[exp(-tHfl)] as n ++a), Vt  >O,  and the same holds for 

2.1, then 

Hr, HF, Here Tr denotes the trace. 

Pro0 f. 
(a) It follows from theorem XIII.68 of Reed and Simon (1978b). 
(b) It is a straightforward consequence of the min-max principle and lemma 2.1. 
(c) It follows from (b) and the fact that both exp(tA?) and exp(tA:), t > O ,  are 

trace class. 
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(d) From the min-max principle and lemma 2.1 applied to V -  V, we have that 
for any E > 0 

-b(&,  v -  vn)+Ak[-(l-&)AfZ+ V ] ~ h k ( H f : ) ~ A k [ - ( l + E ) A f : +  V ] + b ( & ,  v -  vn). 
Since b ( ~ ,  V -  V, )  can be taken arbitrarily small for n + +m, we have that if AF(m) 
is an accumulation point of A k ( H f :  ) then 

hk[- (1  -E)Afl+ v] S Ay(m) Shk[- (1 +&)A:+ v] VE >o.  
If we observe now that -(1 +&)A:+ V (- (1 -&)A?+ V )  are families of closed, 
semibounded quadratic forms decreasing (increasing), as E + 0, to the quadratic form 
-A:+ V, we can apply a general result due to Robinson (1971) (see also Simon 1978 
and Weidmann 1980) to get that A;(CD) = A k ( H D ) .  The same argument clearly applies 
to A k ( H f r ' ) .  

(e) It is an immediate consequence of (d) and (c). 

Remark 2.2. Actually for the definition of the operators H? and H? it is not 
necessary for the potential V to be a function. It can also be a distribution, provided 
it is small in the sense of quadratic forms with respect to the Dirichlet and Neumann 
Laplacians. This is the case, for example, when V ( x )  =CY='=, S ( x  -xi), being n 
arbitrary different points in A and 8 the usual delta function at x = 0. 

By means of the above proposition we are now able to define, for a fixed hypercube 
A in Rd, two positive non-decreasing functions of bounded variation in R, p ? ( A ) ,  
p r  ( A )  as follows. 

Definition 2.2. 

p:(A)  = # { k  E hl: Ak(HD)<A}, 
A ER. 

p F ( h ) =  #{k E hl; Ak(HN)<A}, 

The following monotonicity properties of p:(A)  and p ? ( A )  with respect to the box 
A, known as the Neumann-Dirichlet bracketing, will be useful later on. In the sequel 
we assume that if V E L ~ ( A ' ) ,  p as in lemma 2.1, then V A C  A', p ? ( A ) ,  p ? ( A )  are 
computed for the operators -A: + VA, - A t  + VA, on L2(A)  where VA is the restriction 
of V to A, 

Proposition 2.2. 

(a) If AcA'thenp~,(A)3p:(A),  A E R .  

(b) VA c Rd, A ER. 

(c) Let Al,  A2 be disjoint open hypercubes such that (Al  U 

pfiJ ( A )  3 D? (A),  

= A and A\(Al U 
A,) has measure zero. Then 

P? ( A )  3 P?, ( A )  + P ? ~  (A ), 

P? (A ) P ? ~  (A ) + 6, (A 1, 
A ER, 

A ER. 

For a proof of the above proposition we refer the reader to Reed and Simon (1978b, 
ch XIII, 15) (see also Glimm and Jaffe 1981). 
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Finally we will need the following asymptotic result (see e.g. Lieb 1976, Reed and 
Simon 1978b and Simon 1979). 

Proposition 2.3. 

where Td is the volume of the unit sphere in Rd and (AI is the Lebesgue measure of A. 

Proof. We give the proof only for p: ( A )  since py ( A )  can be treated in the same way. 
From point (b) of proposition 2.1 we have 

The result now follows from Weyl’s result on 

3. Existence of the density of states and independence of boundary conditions 

Let V(x, w )  be a jointly measurable random field on Rd such that: 
(a) There exists a group of measure preserving transformations {T,.}iGI, I = Rd or 

I = Z d ,  in the probability space (a, @, P )  such that V(x, Tiw) = V(x - i, w )  V i  E I, and 
{ z } i E I  is metrically transitive in the sense that if T,A = A  V i  E I, A E @, then P ( A )  is 
either one or zero. 

(b) If I = Rd then E{\ V(0, w) l” }  < +CO. If I = Zd then E&, 1 V(x, U)\” dx} < +W. 
Here p is as in lemma 2.1, E denotes the expectation with respect to the measure P 
on (a, 4) and A. = { { x ~ } ~ = ~  E Rd; - is  xi c t}. In the sequel we will refer to (a) and (b) 
as assumption A .  We will also denote by H? ( w ) ,  H f :  ( w )  the operators -A?+ V( a ,  w ) ,  
-Ay  + V( a ,  w )  respectively, and by p: (A, U ) ,  py(A,  w )  the corresponding distribution 
functions defined as in 9 2. We notice that H y  ( w )  and H: ( w )  for a fixed hypercube 
A are well defined for almost all w E a, since V( a ,  w )  E L p ( A )  almost surely using 
assumption A (b), and that using the general results of Kirsch and Martinelli (1981a) 
both p? (A, w )  and pf: (A, w )  are measurable in A and w. 

Proposition 3.1, Let A c Rd be a fixed bounded hypercube’and assume that the random 
field V(x, w )  satisfies assumption A. Then 

for some positive constant c d ,  where for V E Lp(A), V- = max( V, 0); 
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for some positive constant C2, any 77 > 0 and any p > 1 ; 

(c) if d = 1 Eb?(A, w)}<ClE(  !A I(V(x, w ) - A  - T ) - I  dx)/J; 

for some positive constant C1 and any 77 > 0. 

Proof. 
(a) By definition 

by proposition 3.1 and the min-max principle, where &[-A+ (V, -A)-xh] are the 
eigenvalues (given by the min-max) of -A+  (V, -A)-xA in L2(Rd). Here ,YA(X) = 1 if 
x E A, xA(x) = 0 otherwise. By the Cwikel-Lieb-Rosenbljum bound (see e.g. Reed 
and Simon 1978b) the RHS of (3) is less than 

c d  [A l(v(x, U ) - A ) - l d ”  dx, c d  > 0. 

(b) As in the proof of (a) we can bound p Y ( A ,  w )  by 

pY ( A ,  U )  S # { k  E N; Ak[-A+ (vu - A  - v)-XAI<-v} vv>o. (4) 

Using now the Lieb-Thirring bound (see Lieb and Thirring 1976), we obtain that (4) 
is bounded by 

c, > 0 ,  vp > 1. 1 
G-1 I(Vw-A-v)-lPdx, 

T A  

(c) This is proved in exactly the same way. 

In order to prove the main theorem of this section we need the following result 
due to Akcoglu and Krengel (1981). Let 9 be the class of sets [a, 6 )  of the form 
[a, b )  = {x E Rd, ai s xi  < bi, i = 1 . . . d, U, b E Rd}. The class pl is defined analogously 
but with U and b in Ed.  A family of sets (d c Q, the field of rational numbers) 
in 9 is called regular if there exists another family (A:) in 9 such that 

(i) A r c A L V r ;  
(ii) A: c A: whenever r < s;  
(iii) 0 < IA:l s CIA,I Vr  and some constant C > 0, where /Arl denotes the Lebesgue 

measure of the set A,. If furthermore the family (At) can be chosen in such a way 
that Rd = ur A: then we say that limr-t+oo A, = Rd. 

An analogous definition holds for a family of sets in 91, but in this case r ranges 
over the integers. Let now T = ( X ) i E ~ ,  I equal to either Rd or Zd, be a group of 
measure preserving transformations in a probability space (Cl, @, P )  as in assumption 
A, and let F: 9-,L1(R, P) be a set function with the following properties in the case 
when I = Rd: 

(i) FA(ZW) =FA+i(w),  
(ii) if AI . . . A, are disjoint sets in 9 and if A = U?= Ai is also in 9 then FA 3 Zl  FA^ ; 

(iii) sup( 

A E 9, V i  E I ;  

F,,(w) dP(o) ,  A E 9,1141 > 0) = r ( F )  < +a; I4 
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and the same when I = Zd but with 9 replaced by 9 1 .  Then F is called a superadditive 
process with respect to the group (Ti)iEI. For such a class of processes Akcoglu and 
Krengel proved the following. t 

Theorem 3.1. Let F be a superadditive process with respect to the group ( Ti)isRd such 
that there exists a E E L’(R, P )  with F L ~ , ~ )  SF,  Vu and b with lait 1, lbil S 1, ai, bi E Q, 
i = 1 . . . d. Let also (Ar) be a regular family in 9 with lim,,+, A, = Rd. Then 
lim,++, FA,(w)/lAr1 = y ( F )  almost surely. 

An analogous result holds in the discrete case I = Zd for any discrete superadditive 
process F and any regular family (A,) in PI. Note that in the discrete case the 
additional assumption F c ~ , ~ )  s E is not necessary. 

We are now in a position to prove the following theorem. 

Theorem 3.2. Let V(x,  w )  be a random field on Rd satisfying assumption A. Then 
there exists on 5S a non-decreasing positive function pD(A) and a set 00 c R of P-measure 
one such that VA E Q 

1 
V w  E n, lim --PA,(& w )  = p ( A )  

r-+m lA,l 

where {Ar} is a regular family in 9 or 91 increasing to Kid, the choice of 9 or 
depending on whether the set I of assumption A is Rd or Zd.  

Proof. We treat only the case I = Rd, the other one being completely analogous. We 
first show that for A E Q fixed p y  (A, w ) ,  A E 9 is a superadditive process with respect 
to the group ( T , ) i s R d  in the sense explained before, and that it satisfies the additional 
condition of theorem 3.1. It is clear from assumption A and proposition (2.2) that 
the first two properties of the definition of a superadditive process are satisfied. 
Furthermore, from proposition 3.1, the stationarity of the random field V(x,  w )  and 
assumption A, we have that 

VA c Rd IA/-’E{Pf (A, W ) }  s cdE{I v(0, U )  - A  Id”X( v(0, W )  < A)} < +a 
for d 2 3 and similarly for d = 2 and d = 1, so that pf (A, 0) is a superadditive process. 
Since p f ( A ,  w )  is positive, the condition of theorem 3.1 is clearly satisfied, and thus 
there exists a set SZ, c R of probability one such that 

I 

(A,) for A E R\Q, where A, Taking now Ro = nAEa RA and defining pD(A) = limAn+, p 
is a sequence of rational numbers decreasing to A, we obtain the statement. 

D 

An immediate corollary is the following. 

Corollary 3.1. Let pD(A) be defined according to the previous theorem. Then 
(a) if the index set I of assumption A is Rd, for any A E Q: 

(i> p D ( ~ )  s c ~ E { ]  V(O,  W )  - A  V(O,  w >  <A)} i f d 3 3 ;  
t Actually Akcoglu and Krengel worked with the semigroup (Ti), I E (R’)d or i E (Z’Id but, as is said in 
Krengel (1982), all their results extend immediately to the case we consider. 
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p > 1 as in assumption A, if d = 2; 

V q  > 0 if d = 1, 

where c d ,  C2 and C1 are the constants appearing in proposition 3.1, AO is 
as in assumption A and x( V(0,  w )  < A )  is the characteristic function of the event 
{V(O, w ) < A } .  

Proof. 
(a) Since pD(A) = ~up(lAl-'Ep:(A, w ) ,  A E  9, \AI > O )  the estimates (i), (ii), (iii) fol- 

low immediately from proposition 3.1 and the strict stationarity of the random field 
V(X, U). 

(b) is proved in an analogous way. 

Remark 3.1. In Krengel(l982) theorem 3.1, and therefore theorem 3.2 and corollary 
3.1, is extended to the more general case where the superadditive process F is defined 
on the class of all Bore1 subsets of Rd and the limit is taken over a sequence of convex 
sets ( h r ) r E ~  satisfying the following regularity conditions. 

(i) @(Ar) + +CO as r + +CO, where @(A,) is the supremum of all s > 0 for which there 
exists a sphere S(x, s) = (y E R d ;  ly - X I  s s )  contained in Ar. 

(ii) There exists a constant C>O and a sequence Ai in 9 such that A i c  A, and 
IAA < CIA,I. 
In this case one gets again the almost sure convergence of {FA,}/lArl. 

Remark 3.2. The existence of the limit function pD(A), usually called the integrated 
density of states, was proved by Pastur (1973, 1971, 1972), and subsequently by 
Nakao (1977) (see also Fukushima (1974) and Fukushima et a1 (1975) for the case 
where the Laplacian is replaced by its discrete version on l 2 ( Z d ) ,  Kotani (1976) and 
Nakao (1977) for the case where the potential V is a random measure on R and 
Gusev (1977) for an extension to more general elliptic operators) by very different 
methods, under the stronger assumptions that V(x,  w )  is an ergodic random field on 
Rd with almost surely continuous sample paths and such that E{exp[-?V(O, U ) ] }  < 
+X)V?>O. 

It is an interesting problem to check if the non-decreasing function pD(A) actually 
depends on the boundary conditions (Dirichlet in our case) imposed at the boundary 
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of the sets {Ar}. The next theorem shows that under an additional assumption on the 
negative part of the random field V(x, U )  the effect of the boundary conditions vanishes 
in the thermodynamic limit Ar -* Rd. 

Theorem 3.3. Let V(x, w )  satisfy assumption A and assume in addition that: 
(a) if the index set I is Rd (i) ~ u p p L , ~ ) ( A ,  w)EL'(SZ,P) where the sup is taken 

over all the vectors U and b such that / a i l s  1, Ibils 1, ai, bi E Q, i = 1, .  . . , d ;  (ii) 
E{Tr e~p[- t~(-A?~+qV)]} is finite for some to> 0 and some q > 1 where -A?o is the 
Neumann Laplacian in L2(Ao),  A, being as in assumption A; 

Then there exists on R a non-decreasing function pN(A) such that for any A E Q 
(b) if I = Zd only the second of the above conditions is necessary. 

where { A r }  is a regular family in 9 or in 9' increasing to Rd and furthermore 
p N ( ~ )  = pD(h) for almost all A E R. 

Proof. As usual we discuss only the case I = Rd. We remark first of all that using 
proposition 2.2, for A E Q fixed, the process F A ( w )  = -p?(A, U )  is superadditive in the 
sense of Akcoglu and Krengel and satisfies, by assumption, the additional condition 
of theorem 3.1. It follows that limr-r+m lArl-'pF,(A, w ) ,  where (A,) isas in thestatement, 
exists almost surely and it is equal to inf(Epf:(A, w)/lAl ,  A E 9, /AI > 0) = pN(A); the 
extension of pN(A) for A E R\Q can be done as in theorem 3.2. Let us now estimate 
thedifferencepN(A)-pD(A)=G(A). Since by proposition 2.2p?(A, w ) - p f ( A ,  w ) 3 0 ,  
VA c Rd, VA E R for almost all U,  we have that G(A) 3 0; on the other hand, using 
theorem 3.2 and the above result for pN(A), G(A)< IAI-'E[p?(A, w ) - p ? ( A ,  U)], 
VAC Rd. It is then sufficient to show that limr-,+m IArl-'E[p?,(A, U )  -pfi),(A, U)] = 0 for 
a sequence of cubes A, increasing to Rd or, using the estimate 

( p ? ( A ' ,  w ) - p f i ) ( A ' ,  U ) )  dA's-e" '*(L~(t,  w)-L?(t ,  w ) ) ,  t > O ,  
1 1-1 t 

where 
+m 

L?(t, w )  = e-" dpf: (A, w )  = Tr{exp[-t(-Af: + V)]} I_, 
and the same for LD(t, w ) ,  that 

i 

for some t > 0. To prove this we need the following lemma. 

Lemma 3.1, Let A be a hypercube of size M centred at x = 0 and let V E L p ( A )  where 
p is as in lemma 2.1. Then 

0 s Tr{exp[ - t (-A? + V)]} - Tr{exp[ +-A? + V)]} 

s Tr{exp[-t(-Af: + q V)]}"q{Tr[exp(+tAf;')l - Tr[exp(tAf)]}'/' 

V q > l ,  s > l  such that q-'+s-'=l. 
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Proof. We remark first of all that using proposition 2.1 and a limiting argument it is 
enough to prove the lemma only for V E C? (A). Now let K ~ ( x ,  y, t )  and KK(x, y, t )  
be the kernels of exp[-r(-Ay+ V)] and exp[-t(-A?+ V)] respectively. It can be 
proved (see e.g. Bratteli and Robinson 1981) that for both K r  and KF one has the 
following representation in terms of the Wiener measure: 

where Pi,? is the conditional Wiener measure on the space of continuous functions 
w : [0, t ] +  Rd (see e.g. Simon 1979 and Nakao 1977) and E is the function from Rd 
onto A defined by 

E (X)i = xi - kM 

E (xli = (2k + 1 ) ~  -xi 

if (2k - k)M s xi s (2k  + i )M,  
if ( 2 k  + 3 ) ~  c xi c ( 2 k  + $)M, 

i = l , .  . . , d .  
Using the above representation we obtain immediately that 

where x A ( w )  is one if w is such that us& A for some s c t and zero otherwise. Using 
now the Holder inequality with exponents 4 and s, once in the Wiener integral and 
once in the sum, we obtain 

1/s 

( 1 U E E - ' ( X )  

where K r  and KF are the kernels of exp(tAf;') and exp(tA?) respectively. 

and y for t > 0, we have that 

Tr{exp[ - t (-A? + V)]} - Tr{exp[ - t (-A? + V)]} 

dPi,,(w) xi) = [Kf;:(x, xt)l*"[K! (X, X, t )  -KF (X, X, t)]"", 

Since for V E C? (A) both K ~ ( x ,  y, t) and K!(x, y, t )  are jointly continuous in x 

= jA dx (K!(x, x, t)-K:(x, x, t ) )  

ZG I[Tr{exp[ - t (-Ay + 4 V)]}] ' I q  {Tr[exp(t Ay)] - Tr[exp( t A?)]}"' 

by the previous estimate on the difference between K r  and K? and the Holder 
inequality with exponents 4 and s applied to the integral over A. 

We can now complete the proof of the theorem. Using the above lemma and 
again the Holder inequality, we obtain 
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where Lf:,(t, w, q) is the same as Lrr(t, w )  but computed for -A?,+4V( a ,  U ) .  Assume 
now that A, has size r E N and let {Ai} be the collection of the basic cells of Zd inside 
A,. Since -A,",+ V( . ,  o)-=G$~ (-AXi+ V(. ,  w ) )  where is the Neumann Lap- 
lacian on L2(Ai) and ai is the direct sum (see e.g. Reed and Simon 1978b), we obtain: 

by assumption; since lA,l-'(Tr[exp(tAf:,)]-Tr[exp(tA~,)]}+ 0 as r + +CO (see e.g. Pastur 
1971) the theorem is proved. 

Remark 3.3. Benderskii and Pastur (1970) proved the above result with only the 
assumption of the existence of the first moment of I V(x, w)l in the one-dimensional 
case, using methods from the Sturm-Liouville theory. For a more detailed analysis 
of p ( A )  in the one-dimensional case we refer to the paper by Molchanov (1981). We 
also notice that the theorem covers the case of mixed and periodic boundary conditions 
since they are in between the Dirichlet and Neumann case. 

We end the section by giving a sufficient condition on the random field V(x, U )  

such that the conditions of the previous theorem in the case when the index set I is 
Rd are satisfied. 

Theorem 3.4. Assume E{exp[-tV(O,w)]}<+m for some t > O  (and hence for all 
s < t ) .  Then 

(i) sup p?(A,  w )  E L'(Q P )  where the sup is taken over all cubes inside 140; 
(ii) E{Tr[exp(-A? + V,)]} s E{exp[-tV(0, w ) ]  Tr[exp(rAf:)]} for any bounded 

(iii) let p(A)=pN(A) =pD(A) according to theorem 3.3 and let L(t)  be its Laplace 
hypercube A in Rd ; 

transform; then 

L(t)  s ( 2 ~ t ) - d ' 2 ~ { e x p [ - t ~ ( ~ ,  w)]}. 

Proof. 
(i) Let V-(x, w )  denote the negative part of V(x, w ) .  Then, using the assumption 

E{exp[-tV(0, U ) ] } <  +OO, it is easy to show that E{& 1 V-(x, U ) [ "  dx)"}< +CO for any 
bounded hypercube A c  Rd, t lp ,  m < +CO. Let now A be fixed and let, for 1 > E  > 0, 
bA(&, V-) be the constant appearing in lemma 2.1 computed for V-(x, U ) .  It is not 
difficult to check, using the Sobolev embedding theorems, that bA(&, V-) can be taken 
proportional to (5, I V-(x, w)l" dx)" for some p and m sufficiently large, depending 
only on the dimension d .  Using now the estimate of proposition 2.1 on the eigenvalues 
of H f :  ( w ) ,  we obtain 

(see e.g. Reed and Simon 1978b, ch XIII, 15, proposition 2). It is clear that the 
supremum over A in the basic cell A0 of this last expression is in L'( f l ,  P). 
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(ii) Let A c Rd be fixed and let for M >  0 V , ( x ,  w )  = max(-M, V(x, U ) ) .  Then, by 

Tr{exp[-r(-A? + V,)]} s Tr[exp($tA?) exp(-tV,) exp(&A?)] 

the Golden-Thompson inequality (see e.g. Reed and Simon 1978b) we have 

where {(p,} and {pr  } are the eigenfunctions and eigenvalues of the Neumann Laplacian 
on L*(A). Taking now the expectation of both sides of this inequality, using the strict 
stationarity of V(x, w )  and the obvious estimate E{exp[-tVM(x, @)I}< 
E{exp[-tV(x, U)]}, we obtain 

E[[Tr{exp[-r(-A? + VM( e ,  w))]}] s Tr[exp(tA?)]E{exp[-tV(O, U)]} 

for any M>O. Since as M +  +CO, V , +  V in Lp(A)  where p is as in lemma 2.1, we 
obtain the statement by taking the limit M +  +CO in the last inequality, using the result 
(e) of proposition 2.1 and the monotone convergence theorem. 

(iii) Let p ( A )  = p N ( A )  = pD(A); as we have already remarked p N ( A )  S 
lAl-’E[p? (A, U)] for any hypercube A in Rd, so that 

exp(-tA)dpN(A) s- [ exp(-tA 1 d{E[p? (A ,  w)I} 
+a, +m 

lAl -m 

1 +05 

14 --CO 

=-E [ exp(-rA) dp? (A, w ) ,  

by Fubini’s theorem; this last expression using (ii) is bounded by 

lAl-’E{exp[-r V(0, w )]} Tr[exp(t A?)] 

so that taking the limit A +  Rd and observing that 1AI-l Tr[exp(tAf;’)] converges as 
A + R d  to ( 2 ~ t ) - ~ ”  (see e.g. Pastur 1971) we get the result. 

Remark 3.4. Estimate (iii) on L(t) was proved under the stronger assumption of the 
continuity of the sample paths of V(x, w )  by Pastur (1977), Fukushima (1974) and 
Nakao (1977) using a representation of L(t)  as a Wiener integral. In the discrete case 
I = Zd the situation is more complicated since the random field V(x, U )  is no longer 
strictly stationary. However in order to assure the boundedness of 
E{Tr[exp(-t(-A?,+ V( . ,  w ) ) ) ] }  we can use lemma 2.1 and obtain 

E{Tr[exp(-t(-Ai;b + V( -, w)))l} E{exp[bo(&, V,)rl} Wexp(~fA?,) l  

where bo(&, V) is the constant appearing in lemma 2.1 computed for V, restricted 
to A,; as has already been remarked, using the Sobolev embedding theorems, bo(&, V u ,  
can be taken proportional to IIvo11i4(Ao) for sufficiently large k and q, provided 
IIVu1(iq(~,)<+CO almost surely. Here E is an arbitrary number between 0 and 1. We 
also remark that results analogous to the above theorem can be obtained by combining 
the path integral approach to the density of states used by Pastur and recent estimates 
obtained by Carmona (1979) on Wiener integrals. 

4. Asymptotic results for A + f CO 

We prove here some asymptotic results for the limit function pD(A) in the case when 
A goes to plus or minus infinity. They can be looked upon as an extension to our 
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case of previous results obtained by Pastur (1973) and Nakao (1977). Throughout 
the section the random field V(x, w )  is assumed to satisfy assumption A and pD(A) 
will denote the corresponding limit function constructed according to theorem 3.2. 

Theorem 4.1. 

where Td is the volume of the unit sphere in Rd. 

Proof. As before we give the proof only in the case when the index set I of assumption 
A is Rd, the other case being analogous. We remark first of all that, using corollary 
3.l(a), 

V d  2 1. lim ~ - d / 2  D 
p ( A ) < + o o  

A--+o3 

For d 2 3 this is obvious from the estimate pD(A) C CdE(1 V(0, w )  - A  For d = 2 
or d = 1 the same holds if we take the arbitrary constant 7 > 0 appearing in estimates 
(ii) and (iii) of corollary 3.l(a) proportional to A. Let us now prove the correct lower 
bound for the limit. Since pD(A) = S U P A ~ ~ F  IL~I-~E[P?(A,  w ) ]  we have 

VA c Rd. 

Using now Fatou's lemma and the result of proposition (2.3), we obtain 

- d / 2 E  
- lA1 [P: (A, @ ) I  lim ~ - d / 2  D p ( A ) S  A 

h++a0 A++cO 

lim [pD(A, W ) ] 2  (27r)-d7d. 
A-.+- lAl 

Upper bound. We first discuss the case d 2 3. Let A c Rd be fixed and let us write 
EbY(A ,  w)l/IAl as 

h- 'E[P?(A,  w)l=1A1-'E[#(n E N ;  A , [ H ? ( u ) - A ] < O ) ] .  ( 5 )  

We now decompose the random field V(x, U )  - A  in two parts: 
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We now estimate separately each term of (6) .  The first term, using proposition 
3.1 and the stationarity of V(x, w ) ,  is bounded by 

The second term, using the bound W(x,  w, A )  3 -ah, is estimated by 

(see e.g. Reed and Simon 1978b, ch XI11 15, proposition 2 for a proof of this last 
inequality). Combining now ( 5 ) ,  (6) ,  (7) and (8) we obtain 

V-E >O,Va > 1. (9)  

Taking now in (9) the limit A,, -+ Rd, where {A,} is a regular family in 9 increasing to 
Rd, we obtain using theorem 3.2 

Dividing by A - d / 2  and passing first to the limit A + +-CO and subsequently to the limits 
E -+ 0, a -+ 1, we obtain 

The proof in the case d = 2 or d = 1 goes along the same lines with the only difference 
that estimate (7) must be replaced by 

E{I(V(O, U )  -A)x(V(O, w ) <  A ( 1  -a)) - qlp} /vp- l ,  V(77 > O ,  P > 1, 
as in assumption A, if d = 2, and by 

E{I(V(O, w )  -A)x(V(O, w )  <A(1 --a)) - vl}/G, 
It is then sufficient to take the arbitrary constant (77 = ah, ~7 > 0, and pass to the limit 
U + 0 after the limits A + +-CO, E + 0, a + 1. 

V q  > O  if d = 1. 

We now turn to examine the behaviour of pD(A) as A + --CO. 

Theorem 4.2. 
(i) Let y > 0 be such that y + d/2 > 1 and assume that E{I V-(O, w)IY+d/2}  < +-CO in 

the case when the index set I is Rd, or E{jA, I V-(x, ~ ) l ” + ~ / ~  dx}< +a in the case 
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I = Z d .  Then 

Here as usual V-(x, w )  denotes the negative part of V(x, U )  and Kd,? is a positive 
constant. 

>o 
implies 

(ii) If the index set I is Rd, limA,-, - [ A / - *  ln[P( V(0, w)<A)]sB,  cy >o, 

Proof. 
(i) Since pD(A)  as a measure on 08 is the weak limit of p?"(A, w)/lA,I for almost 

all w, where { A n }  is a regular family in 9 with An + IWd (or An E PI in the case I = Zd),  
we have 

Since Ai[HYn (w)] 2 &[-A + V-(. , 0)xA,] Vi, where -A+ V-( a ,  w ) x A n  acts on L2(Wd) 
and x A , ( x )  = 1 if x E An, zero otherwise (see e.g. Reed and Simon 1978b), we get that 
(1 0) is bounded by 

in the case I = Rd, or equal to E&, I V-(x, u ) I ' + ~ / ~  dx} in the case I = Zd. Here we 
have used the Lieb-Thirring bound on the sum of the y-power of the negative 
eigenvalues of -A+ V on L2(Rd) (see Lieb and Thirring 1976): 

where Kd,v is a positive constant depending only on d and y, and the ergodic theorem 
for metrica!ly transitive random fields (see e.g. Tempelmann 1972). 

(ii) It is a straightforward consequence of the estimate (i), (ii) and (iii) of corollary 
3.l(b). 
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We conclude with two examples. The first one shows that in general the estimates 
of corollary 3.l(b) and of the above theorem cannot be improved; the second one 
generalises a result on the asymptotics of pD(A) as A -P -CO obtained by Pastur (1977) 
and Nakao (1977) for gaussian random fields V(x ,  w )  with continuous sample paths, 
to the case when this condition is not assumed. 
Example 1. Let {4i(w)}i.Zd be a stationary metrically transitive random field on Z d  
such that E{lqo(w)lP}<+oo where p is as in lemma 2.1, and let also V(x,  w ) = q i ( w )  
V x  E Ao+i ,  A. being as in assumption A. Then V(x ,  U ) ,  as a random field on Rd, 
satisfies assumption A, and the associated limit function pD(A ) constructed according 
to theorem 3.2 is estimated from above by 

in the case d 2 3 and analogously for d = 2 and d = 1 (see corollary 3.1(b)). Let us 
now assume for example that for some (Y > p  limA+-m (A I”P(qO(w) < A )  = B, B being 
an arbitrary finite constant. As can be checked, (11) implies that 

lim I A  I u - d ’ 2 p D ( ~ )  s constant B. 
A + - m  

On the other hand, according to theorem 3.2 pD(A) = S U P ~ , S ~  ElAl-’(Pfi” (A, w ) }  so that 

p D 0 )  2 Ebfi”o(A, 0)) = E{ # ( n  E N; AJ-A?J < A - q ~ ( w ) )  

(see again Reed and Simon 1978b for this estimate). From (12) it follows immediately 
that 

It is worthwhile to remark that in the case when the Laplacian -A is replaced by its 
discrete version on 12(Zd)  it is possible to prove (see Fukushima 1980) that pD(A) goes 
to zero as A goes to minus infinity precisely as the quantity P(  V(0 ,  w )  < A )  (actually 
pD(A) in the discrete case is independent of the boundary conditions under very 
general assumptions on the random field V(x,  w ) ,  x E Z d ) ;  a crucial role in this result 
was played by the boundedness of the discrete Laplacian on I 2 ( Z d ) .  The above example 
and corollary 3.l(b) show that in the continuous case a correction proportional to 
I A  is present. 
Example 2. Let V(x ,  w )  be a jointly measurable gaussian random field on Rd with 
correlation function h(x  - y )  = E{ V(x ,  w )  V ( y ,  w ) } .  Without loss of generality we can 
also assume that E{ V ( 0 ,  U ) }  = 0. Let pD(A) be the associated limit function; since 
the conditions of theorems 3.4 and 3.2 are clearly satisfied, pD(A) is actually indepen- 
dent of the boundary conditions, so we will write p ( A )  instead of pD(A). Then for 
p ( A )  one has the following asymptotic result: 

lim - A p 2  ln[p(A)] = [2h(0)1-’. 
A+-m 
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Proof. Using theorem 4.2 (ii) it is enough to prove the lower bound 

- lim - A  -’ ln[p(A )] 3 [2h (0)I-l 
A+-CU 

As in example 1 we can bound p ( A )  from below by EbY0(A, U)}. Obviously 

Eb?,(A, U)IbP{Ai[-A?o+ V ( * ,  u ) I < A )  

with L2(Ao)-norm equal to one, since by the min-max principle 

Using now the gaussian character of V(x, U), it is easy to show (by computing e.g. 
the characteristic function) that 6, =IA, dx Irp(x)l’ V(x, U )  is again a gaussian random 
variable with mean zero and variance a, = jAo dx jAo dy Irp(x)121rp(y)J2h(x - y), so that 
(14) implies 

Finally we observe that since h(x) is a measurable positive definite function on OBd 
satisfying the estimate Ih(x)l s h(O), it is also continuous (see e.g. Gelfand and Vilenkin 
1966), so that taking in (15) a normalised 8-sequence +on, rpn E HA (Ao) Vn, shrinking 
at the point x = 0 we obtain 

- lim -A-’In[p(A)]a[2h(O)]-’. 
A--CU 
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